Subsea Integrity Practices in GoM – A Case Study

Session 9: HSE
SPE Workshop
21st October 2011
Objectives

- Integrity Management Philosophy
- Performance Assessment Methods
- Integrity Issues and Mitigation Strategy
- Summary
Integrity Management Philosophy

• Assure fitness-for-purpose of the subsea system
• Compliance with regulatory requirements
• Effectively manage –
 • Risk to personnel safety
 • Risk to environment
 • Availability of asset
• Address threats arising from –
 • Internal (Corrosion, Erosion, Blockage, etc.,)
 • External (Corrosion, Impact, Structural Stress/Fatigue, etc.,)
 • Ageing related problems
 • Environment uncertainties
IM Procedure

- DFI Dossier
- Inspection data
- Monitoring data
- Operational experience

Risk based IM Plan

- Inspection Requirements
- Monitoring
- Mitigation Needs
- Operational Limits

Shreenaath Natarajan
Subsea Integrity Practices in GoM – A Case Study

Performance Assessment Methods
Performance Assessment Methods

1: Direct

2: Indirect

VIV FATIGUE DAMAGE MONITORING
6 month period

Monitoring period
Integrity Issues and Mitigation Strategy
Failure Modes

- **Internal**
 - Internal corrosion – SSCC, HIC, CO2 corrosion
 - Erosion
 - Blockage – wax and hydrates
 - Polymer degradation
- **External**
 - Structural overstress
 - Structural fatigue
 - External corrosion
 - Impact
 - Structural wear-centraliser
Issue 1 – Environmental Uncertainties
Issue 1 – Track Environmental Records

- Environment record tracked against design limits
- Identify the events that exceed design limits for further investigation
Issue 2 – Riser Vortex Induced Vibrations (Failure Mode - Fatigue)

Target KPI -

Extreme Loads, Long-term fatigue
Issue 3 – Flexible Riser Internal & External Corrosion

Issue
• Degradation methods difficult to predict or measure
• Few early warnings from external visual inspections
• Annulus volume testing is subjective

Recommendation
• Improve reliability and accuracy of volume tests
• Corrosion modeling or methods to predict onset of corrosion
• Embedded fiber optics for monitoring
• External inspection/scanning tools
• Acoustic monitoring
Issue 4 – Installation Issues

- **Issue**
 - High surface wellhead bending moments
 - Estimated fatigue life reduced to 2 yrs from 20 yrs
- **Cause**
 - Missing centraliser during installation
- **Recommendation**
 - Retrofit foam centralisers
 - Continuous monitoring of wellhead bending moments
Issue 5 – Material Degradation

- **Issue**
 - Flexjoint elastomer deterioration
 - Increased fatigue and extreme loads at riser-vessel interface
- **Source**
 - Prolonged exposure to high temperature/pressure
Issue 5 – Material Degradation

- Recommendation
 - Develop failure prediction methods based on P&T data
 - Improve CVI tools and modeling methods
 - Improved elastomeric materials
 - Implement learning’s from drilling riser elastomers
Issue 6 – Coating Breakdown (External Corrosion)

• Issue:
 • External corrosion

• Cause:
 • Installation damage
 • Coating application procedure

• Recommendation:
 • Monitor CP readings
 • Surface preparation is key to effective long term coatings, which is the barrier to external corrosion
 • Design should consider extending the coating to reduce coating transitions
Issue 7 – Cathodic Protection Premature Depletion (External Corrosion)

- Issue:
 - Insufficient cathodic protection and hence external corrosion
- Cause:
 - Inadequate CP design
 - Increased current drawn from other components that should have been electrically isolated
- Recommendation:
 - Monitor CP readings (not always reliable)
 - Retrofit anodes, if depleted
 - Guided Wave Ultrasonics
 - Develop on-line methods for in-service corrosion prediction
Issue 8 – Marine Growth

• Issue:
 • Loss of VIV suppression efficiency
 • Increased drag on the system

• Recommendation:
 • Regular cleaning of marine growth
 • Develop efficient and effective cleaning tools
 • Improve anti-fouling treatments
 • Evaluate fouled fairing performance
Issue 9 – Flowline Snagging

Issue
• Remaining strength capacity

Cause
• GoM following a hurricane
• Final tilt – 8.8deg
• Response suggests 130 to 150te pull from flowline

Recommendation
• Detailed FEA to determine fitness-for-purpose
• Conductor plastic strains ~ 4%
Issue 9 – Subsea Components

Issue
• Visual inspections gives little or no information on the health status

Recommendation
• Hydraulic fluid consumption KPI
• Control valve failure prediction
• Subsea communications health
• Electrical insulation health
• HPU pump cycle monitoring
Assuring ongoing availability of the subsea systems by:

- Practicing and budgeting integrity management as a compulsory activity instead of being reactive to integrity problems considering opportunity cost of shutdowns
- Ensuring competency of the personnel involved in all stages of IM process and in all disciplines
- KPI tracking through integrity monitoring and inspection thus tracking the performance over time and not just a snapshot in time
- Need to mature the monitoring systems available for deepwater systems
- Need to improve/develop methods for real time assessment of accumulated stress, fatigue, and corrosion
- Designs should include capacity for inspection or long term monitoring methods
 Design consideration for mitigation and/or replacement.